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Abstract
Bi-partite entanglement in multi-qubit systems cannot be shared freely. The
rules of quantum mechanics impose bounds on how multi-qubit systems can
be correlated. In this paper, we utilize a concept of entangled graphs with
weighted edges in order to analyse pure quantum states of multi-qubit systems.
Here qubits are represented by vertexes of the graph, while the presence of bi-
partite entanglement is represented by an edge between corresponding vertexes.
The weight of each edge is defined to be the entanglement between the two
qubits connected by the edge, as measured by the concurrence. We prove that
each entangled graph with entanglement bounded by a specific value of the
concurrence can be represented by a pure multi-qubit state. In addition, we
present a logic network with O(N2) elementary gates that can be used for
preparation of the weighted entangled graphs of N qubits.

PACS numbers: 03.67.−a, 03.65.Ta, 89.70.+c

1. Introduction

Motivated by the seminal paper of Einstein, Podolsky and Rosen (EPR) [1], Schrödinger in
his paper entitled The present situation in quantum mechanics [2] introduced the concept of
entanglement. This new type of purely quantum-mechanical correlation was introduced to
reflect the fact that (according to Schrödinger) maximal knowledge of a total system does not
necessarily include total knowledge of all its parts, not even when these are fully separated
from each other and at the moment are not influencing each other at all. Quantum correlations
have attracted a lot of attention during the history of quantum mechanics. Bell [3] and Clauser
et al [4] have shown that these correlations violate inequalities that must be satisfied by any
classical local hidden variable model.
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The complex phenomenon of quantum entanglement has been studied extensively in
recent years because it represents an essential resource for quantum information processing
(see, e.g., [5]). Entanglement between two qubits prepared in both pure and mixed states is
well understood by now. In particular, necessary and sufficient conditions for the presence
of entanglement in mixed two-qubit states have been derived [6, 7], and reliable measures of
degree of entanglement have been introduced. Among others, the concurrence as introduced
by Wootters et al [8] is a very useful measure of entanglement since it is rather straightforward
to calculate and is directly related to the entanglement of formation.

Entanglement properties in multi-qubit systems are, on the other hand, still not completely
revealed. Firstly, intrinsic multi-partite entanglement is of a totally different nature than a ‘sum’
of bi-partite correlations. Secondly, unlike classical correlations, bi-partite entanglement
cannot be shared freely among many particles [9]. In particular, Coffman et al have derived
bounds on bi-partite concurrences in three-qubit systems, which are referred to as CKW
(Coffman–Kundu–Wootters) inequalities. Further investigations on entanglement sharing in
multi-qubit systems have been reported in [10–13]. In these papers special states of multi-
qubit systems that maximize bi-partite entanglement between selected pairs of qubits in the
system have been presented. In addition, intrinsic multi-qubit quantum correlations have been
analysed (see, for instance, [14, 15]).

Controlling the amount of shared bi-partite entanglement in multi-qubit systems can be
used in multi-partite communication protocols such as quantum secret sharing [17] or specific
multi-user teleportation schemes.

The entanglement properties of a multi-qubit system may be represented mathematically
in several ways. Dür [13], for instance, has introduced entanglement molecules: mathematical
objects representing distributions of bi-partite entanglement in a multi-qubit system. He has
shown that given an entanglement molecule, relevant mixed states with the corresponding
entanglement properties can be found.

An alternative possibility for representing the entanglement relations of a multi-qubit
system is the application of entangled graphs. The entanglement properties of a system with
N qubits are represented by a graph of N vertices. The vertices refer to the qubits, while the
edges of the graph represent the presence of entanglement of the corresponding pairs of qubits.
It was shown in one of our earlier papers [16] that for every possible graph one can find a pure
state, which would be represented by that graph. The amount of pairwise entanglement was
however not taken into account.

In the present paper we extend the concept of entangled graphs to describe the amount
(degree) of pairwise entanglement in the system as well. Namely, we assign a weight to each
edge of the graph, which is equal to the amount of entanglement between the corresponding
pair of qubits. The entanglement is quantified in terms of a concurrence.

For a given state of an N qubit system, one can obviously calculate pairwise entanglement,
thereby constructing the appropriate graph. The inverse problem, i.e. finding a quantum state
with entanglement properties represented by a given graph, is more difficult.

In sections 3 and 4 of the paper, we will present a complete analysis of the existence of
quantum states of multi-qubit systems with entanglement properties represented by a given
particular graph.

For a given graph, many quantum states may be appropriate per se. The graph itself is
not, for instance, sensitive to local operations on the qubits. On the other hand, there exist
graphs for which no suitable state can be found. The reason behind this is that bi-partite
entanglement cannot be shared freely: e.g., the CKW inequalities form an obstacle. So, for
instance, we cannot have an entangled graph of three qubits such that each pair is maximally
entangled with the value of concurrence equal to unity. In spite of this, a positive statement
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can be made. We prove in the following that if an additional criterion is fulfilled, namely that
the weight of each edge is bounded from above by a certain value, a pure state corresponding
to the given graph can be found. This bound on the weights depends only on the number of
qubits in the system. We also propose a constructive method, how to find these states.

It is known that an arbitrary quantum state of N qubits can be prepared using a sequence
of single-qubit and two-qubit operations. These operations can be formally represented as a
quantum logic network. In general one needs to use exponentially many resources (counted
by the number of elementary gates) to prepare a quantum state of N qubits.

We will show in section 5 that fewer resources are needed for preparing a system of qubits
in a state with given entanglement properties resulting from our consideration. Namely, a
quantum logic network composed of two- and three-qubit gates enables us to generate the
state in argument. The number of gates building up this network is proportional to the number
of entangled qubit pairs in the system (i.e. the edges of the graph). In the case of an entangled
web, for instance (cf [12]), when all vertices of the graph are connected by edges, the number
of gates necessary for the generation of the state is proportional to N2.

2. Definitions

2.1. Concurrence

In this paper we will use concurrence as a measure of bi-partite entanglement. This has been
introduced by Wootters et al [8] in the following way: let us assume a two-qubit system
prepared in a state described by the density operator ρ. From this operator one can evaluate
the so-called spin-flipped operator defined as

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) (1)

where σy is the Pauli matrix and a star (∗) denotes the complex conjugation in the computational
basis. Now we define the matrix

R = ρρ̃ (2)

and label its eigenvalues (which are all non-negative), in decreasing order, λ1, λ2,λ3 and λ4.
The definition of the concurrence is then

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}. (3)

This function also serves as an indicator whether the two-qubit system is separable (in this
case C = 0), while for C > 0 it measures the amount of bipartite entanglement between two
qubits with a number between 0 and 1. The larger the value of C the stronger the entanglement
between two qubits is.

2.2. Coffman–Kundu–Wootters inequalities

Coffman et al [9] have recently studied a set of three qubits, and have proved that the sum of
the entanglement measured in terms of the squared concurrence between the qubits 1 and 2
and the qubits 1 and 3 is less than or equal to the entanglement between qubit 1 and the rest
of the system, i.e. the subsystem 23. Specifically, using the bi-partite concurrence (3) the
state �jk between the qubits j and k we can express the Coffman–Kundu–Wootters (CKW)
inequality as

C2
12 + C2

13 � C2
1,(23). (4)
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Coffmann et al have conjectured that a similar inequality might hold for an arbitrary number
N of qubits prepared in a pure or mixed state. That is, one has

N∑
k=1;k �=j

C2
j,k � C2

j,j
(5)

where the sum on the left-hand side is taken over all qubits except the qubit j , while C2
j,j

denotes the concurrence between the qubit j and the rest of the system (denoted as j ). The
maximal value of the concurrence C2

j,j
at the right-hand side of equation (5) is equal to unity.

2.3. Entangled graphs

Let us consider a system of N qubits. As already mentioned, we will represent the entanglement
properties of the system with a weighted graph with N vertices. Every qubit is identified with
one of the vertices, whereas the concurrence between a pair of qubits is identified with a
weighted edge, connecting relevant vertices. If a pair of qubits is not entangled at all, there is
no edge present in the graph between the relevant vertices (thus, the edge with a zero weight
is equivalent to no edge). The graph itself is defined by the number of qubits N and a set of
real numbers Cij , giving the concurrences between relevant pairs of qubits.

3. Simple examples

The simplest example of a multi-qubit system with interesting correlation properties was
studied in the work of Koashi et al [12]. These authors have studied a completely symmetric
state of N qubits such that all N(N − 1)/2 pairs of qubits in the system are entangled with
the same degree of entanglement. It has been shown that a state satisfying this condition is
the so-called W -state defined as

|W 〉 = |N; 1〉 (6)

where |N; k〉 is a totally symmetric state of N qubits, with k qubits in the state |1〉 and all the
others in the state |0〉. The concurrence in this case takes the value

Cmax = 2

N
(7)

that is maximum under given conditions.
One can easily generalize this example for other completely symmetric configurations

(e.g., for graphs with weights equal on all edges). As proved by Koashi et al [12], if the value
of concurrence is larger than 2/N (see equation (7)), then the desired state does not exist. If
it is smaller than 2/N then a pure state corresponding to the desired entangled web reads

|�〉 =
√

1 − α2|N; 0〉 + α|N; 1〉.
The desired value of the concurrence C determines the value of a real parameter α which reads

α =
√

CN

2
=
√

C

Cmax
.

A more complicated two-parameter example is the case of a star-shaped entangled graph
(see [18]). In this graph a given qubit is entangled with all the other qubits in the system, while
no other qubits are entangled between themselves. In addition, it is assumed that the strength of
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the entanglement between the given qubit and any other qubit is the same (constant)4. In [18]
it has been shown that asymptotically, in the limit of large number of qubits (i.e. N → ∞),
one is able to find a state that saturates the CKW inequalities. Thus we are able to find a state
for every star-shaped graph in the N → ∞ limit5.

4. General solution

As we have mentioned earlier, it has been conjectured that all N-qubit states have to fulfil the
Coffman–Kundu–Wootters (CKW) inequalities (see equation (5)) which in the case when the
qubit j is maximally entangled with the rest of the system reads

∀j
∑

k

C2
kj � C2

j,j
� 1. (8)

Any violation of this inequality means that the corresponding entangled graph cannot be
represented by a quantum-mechanical state. Under the assumption that all concurrences Ckj

in equation (8) are mutually equal, i.e. C ≡ Ckj , we obtain from the CKW inequality the
bound

C � 1√
N

which is definitely not achievable. To see this we recall that in the case of the entangled
web (all qubits are mutually entangled) the maximal value of the concurrence is given by
equation (7), which represents a bound that is much lower than the bound that follows from
the CKW inequality.

One may proceed either by deriving tighter CKW-type inequalities that can be saturated
by physical states (graphs). Alternatively, one can consider only entangled graphs with
specifically bounded weights on their edges. In what follows we will study this second option
and will restrict the consideration to those graphs in which the concurrence on every edge
is smaller than a certain value. We will prove that there exists a nonzero bound on the
concurrence such that all graphs with weighted edges that satisfy this additional condition can
be realized by pure states.

These states are of the form

|�〉 = α|A〉 +
∑
{i,j}

γij |Bij 〉 (9)

where

|Bij 〉 ≡ (|11..0i ..0j ..1〉 + |00..1i ..1j ..0〉) (10)

|A〉 ≡ (|00...0〉 + |11...1〉) . (11)

The real positive coefficients α and γij satisfy a normalization condition

2α2 + 2
∑
{i,j}

γ 2
ij = 1. (12)

4 This is a special case of a more general graph such that all qubits are entangled (kind of an entangled web [12]),
but one qubit (let us denote it as the ‘first’ qubit) is entangled with the rest of the qubits with the constant concurrence
C1, while other qubits in the system are mutually entangled as well, but the value of the concurrence C2 is different
from C1.
5 The upper bound for bipartite entanglement given by the CKW inequalities is C � 2

N
. The upper bound for the

star-shaped graph is Cmax = 2
N

− δ, where δ ∝ 1
N2 .
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The sums in equations (9) and (12) are taken through all pairs i < j where i, j ∈ N (or,
equivalently, the sums can be extended for all pairs i, j ∈ N with the restriction γij = 0 for
j � i). The high (permutational) symmetry of the state allows us to calculate directly the
concurrence (for details see appendix A)

Cij = max

{
2

(
2αγij −

∑
k

γ 2
ki −

∑
k

γ 2
kj

)
, 0

}
(13)

which is valid under the condition

α � 2γmax

√
N − 2 (14)

where γmax = maxi,j (γij ).
Let us note that the concurrence between every pair of qubits in this rather complex system

is expressed as an analytic function of input parameters, utilizing just a single condition (14).
The set of N(N − 1)/2 non-linear equations (13) connects parameters of the state γij (the

parameter α is specified by gammas via the normalization condition) with the concurrences
of different pairs of qubits. This set of equations is strongly coupled in the sense that in
order to calculate one concurrence one needs to use approximately 2N gammas. The task
now is to invert this set of equations, i.e. to find the set of equations defining the gammas
via the set of concurrences that are given (these concurrences do specify the character of the
entangled graph). Not for every possible choice of concurrences do there exist parameters γij

satisfying the normalization condition 	i,j |γij |2 < 1 and the condition (14). The reason is that
even though the concurrencies under consideration have to fulfil the CKW inequalities these
inequalities are just necessary but sufficient condition for the existence of an entangled graph
with weighted edges. Hence, it is also an interesting question, for which set of concurrences
can one find solutions of the reversed equations (13).

We have found the solution for the parameters γij as functions of the concurrences
Cij (weights on the edges of the entangled graph) that specify the state (9), providing all
concurrences are smaller than a certain maximal value

Cij � Cmax (15)

where Cmax is a given constant.6

Theorem 1. Every entangled graph with weighted edges, that is, specified by the set of
concurrences {Cij } that fulfil the condition (15) can be represented by a pure state given by
equation (9).

The complete proof of this theorem can be found in appendix B. Here we just sketch how
the relevant parameters γij can be obtained via an iteration algorithm. Let us start from a
specific state (9) corresponding to the situation when

Cij = Cmax

for all i, j and then adjust iteratively the parameters γij to fit the concurrences. We can
summarize the iteration process as follows:

• After each step, all concurrences that are evaluated for the state (9) are greater than or
equal to the desired set of concurrences Cij .

• After each step, all gammas are smaller than or equal to their values at the previous step;
they do not change only if for a specific i, j the relevant concurrence is reached.

6 The upper bound for Cmax is obtained from conditions for an iteration procedure as defined in appendix B.
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• The iteration limit, when all gammas are zero, leads to zero concurrencies, too. Therefore,
one has to cross the searched state during the iteration procedure (for a finite precision
this stage can be achieved after a finite number of iteration steps).

The existence of the state itself is proved by showing that the iteration process has a
proper limit. Also, to ensure the validity of the proposed process, we made a broad numerical
test, with varying number of qubits and strength of entanglement. In all tested examples that
satisfied the condition (15), a very rapid convergence was observed, when a precision of about
10−6 of the maximal permitted concurrence was achieved after nine to twelve steps (changing
all gammas at once).

5. Preparation of an entangled graph with weighted edges

In the previous section, we have shown that a large class of entangled graphs with weighted
edges can be represented by a pure state (9). It is well known (see, e.g., [5]) that any state of
a multi-qubit system can be prepared with the help of a suitable logic network. However, in
general the number of two-qubit gates in this network increases exponentially with the number
of qubits.

In what follows we present a quantum logic network for preparation of the state (9),
corresponding to a given weighted entangled graph. This network is very efficient in the sense
that it uses only a quadratic number of three-partite gates with respect to the number of qubits
(every three-qubit gate can be decomposed into at most eight two-qubit gates). Three ancilla
qubits are needed for the procedure; these are not entangled with the other ones at the end of
the preparation process. This keeps the fidelity of the preparation (in the case of error-free
gates) perfect.

5.1. Definitions

Firstly let us introduce the logic gates that will be used in our network. The first gate is a
two-qubit operator, the well-known controlled NOT (cNOT) gate. In this gate the first input
qubit serves as a control. The NOT operation is applied on the second qubit when the control
qubit is in the state |1〉, otherwise the second qubit does not change. The operator which
implements this gate acts on the basis vectors of the two qubits under consideration as follows:

cNOT|0〉i |0〉j = |0〉i |0〉j cNOT|0〉i |1〉j = |0〉i |1〉j
(16)

cNOT|1〉i |0〉j = |1〉i |1〉j cNOT|1〉i |1〉j = |1〉i |0〉j
where i denotes the control and j denotes the target qubit.

The second gate we are going to use is a three-qubit Toffoli gate T with two control qubits.
In the case that these two control qubits are in the state |11〉 then the NOT operation is applied
on the third qubit. In all other cases the Toffoli gate acts as an identity operator.

The third gate we will use is also a three-qubit gate, denoted as R (α). Here one qubit will
serve as a control. When this control qubit is in the state |1〉 then a specific ‘rotation’ in the
two-dimensional subspace of the Hilbert space of the two target qubits will be applied. This
rotation acts on the two target qubits as follows:

R(α)|00〉 = (1 − (α)2)1/2|00〉 − α|11〉 R(α)|11〉 = α|00〉 + (1 − (α)2)1/2|11〉
(17)

R(α)|01〉 = |01〉 R(α)|10〉 = |10〉
where α is the parameter of the rotation.
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The last gate that will be used in our network is a three-qubit gate, which will be denoted
by A. Again, one qubit serves as a control. The following transformation is applied to the two
remaining qubits when the control qubit is in the state |1〉:

A|00〉 = k+|00〉 − k+|01〉 − k−|10〉 + k−|11〉
A|01〉 = k−|00〉 + k+|01〉 − k−|10〉 + k+|11〉

(18)
A|10〉 = k+|00〉 + k−|01〉 + k+|10〉 − k−|11〉
A|11〉 = −k−|00〉 − k−|01〉 + k+|10〉 + k+|11〉

where we have used the short-hand notation k± = 1
2

√
1± 1√

2
. This operation will be used in our

network an even number of times, so only the effects of the operation A2 will appear at the
end. The operation A2 acts in a simpler and understandable way

A2|00〉 = −|01〉 A2|01〉 = |11〉
(19)

A2|10〉 = |00〉 A2|11〉 = |10〉.

5.2. Initial state of the N qubits

In order to prepare an entangled graph with N vertices, i.e. a specific N-qubit state, we will need
three additional ancilla qubits. The ancilla is initially prepared in the product state |1〉|0〉|0〉 and
is completely factorized from the other, graph qubits. These graph qubits are initially prepared
in the generalized Greenberger–Horne–Zeilinger (GHZ) state7 (|�〉I = |1〉⊗N − |0〉⊗N)/

√
2.

Thus the input state of the quantum logic network under consideration reads

|�〉I |1〉N+1|0〉N+2|0〉N+3 = 1√
2
(|11...1〉 − |00...0〉)|1〉N+1|0〉N+2|0〉N+3. (20)

In what follows we will specify gates in the network with three indices, where the first
index specifies the control qubit (or the first two qubits in the case of the Toffoli gate) and
remaining index(es) determine(s) the target qubit(s) of the operation. In addition, if there will
be some action or control applied on the ancillas, we will denote their relevant indices as N + i,
where i = 1, 2, 3 is the position of the ancilla qubit.

5.3. The network

The action of the network can be divided into two main stages. In the first stage an entangled
state of the graph qubits and the ancilla is created. This state contains state vectors that are
essentially the same as those in the desired state (9). In the second stage of the preparation
procedure the ancilla becomes factorized from the graph, which in turn is prepared in the
state (9).

During the first stage of the preparation procedure we will apply the rotation R(αij ) to
each pair i �= j from N target qubits with the control on the first ancilla qubit (see figure 1).
After each R(αij )-gate the Toffoli gate with the control on i and j qubits acts on the first ancilla
qubit. This procedure is repeated

(
N

2

)
-times, for all indices i �= j . During each rotation, a

fraction (that is specified by the amplitude αij ) of the state vector (|11...1〉 − |00...0〉) is
transformed into the state (|11..0i ..0j ..1〉 + |00..1i ..1j ..0〉), whereas the already transformed
part of the state (|11..0k..0l ..1〉 + |00..1k..1l ..0〉) is left unchanged.

7 To generate a GHZ state, one can start with a product state of N qubits with the first qubit in the state (|1〉−|0〉)/√2
while all other qubits are in the state |0〉. Then one applies a cNOT gate to every qubit except the first one with the
control on the first qubit. So, one needs only N − 1 two-qubit gates to prepare the input state.
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i j

i

j

R( )αij

Figure 1. A schematic description of the logic network corresponding to the first stage of the
preparation procedure. The rotation R(α) is applied on every pair of target qubits (all original
qubits, except the ancilla qubits), with α defined by the parameters γij that specify the state
corresponding to a given entangled graph. During this first stage of the preparation procedure
approximately N2 elementary gates are used.

Thus, after a few steps the state given by equation (20) is transformed into

|�〉 =
∑̃
{i,j}

Eij (|11..0i ..0j ..1〉 + |00..1i ..1j ..0〉)|0〉|0〉|0〉 + D(|11...1〉 − |00...0〉)|1〉|0〉|0〉

(21)

where the tilde indicates that the sum is taken over all pairs of qubits that have already been
involved in the transformation. The corresponding amplitudes Eij are given by the relation

Eij = αij√
2


1 − 2

∑̃
{k,l}

E2
kl




1
2

(22)

and D is given by the normalization condition.
We have also to specify the parameters αij for each rotation. These parameters are related

to amplitudes γij that specify the desired state of the entangled graph given by equation (9),
which we want to generate. Comparing the states (9) and (22), we see that for a successful
generation of the state of the graph we need Eij = γij . Using equation (22) we can write

αij =
√

2


1 − 2

∑̃
{k,l}

γ 2
kl


− 1

2

γij . (23)

After performing transformations on all pairs of target qubits the resulting state has the
form

|�〉 =
∑
{i,j}

γij |Bij 〉|0〉|0〉|0〉 + α|A〉|1〉|0〉|0〉 (24)

where the state vector |Bij 〉 is given by equation (10) and

|A〉 ≡ (|11...1〉 − |00...0〉). (25)

We see that the component states |Bij 〉 and |A〉 in equation (24) are essentially the same as
those of the desired entangled graph (see equation (9)). Now we will use the first ancilla qubit
for the last time before disentangling it from the rest of the system. We will apply the specific
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A AAA

Figure 2. This part of the network helps to disentangle the ancilla qubits from the original qubits.
In this case, the rotation A is applied only in the case when two neighbouring qubits are not equal.
Only N elementary gates, in the order of magnitude, are used.

controlled rotation on an arbitrary qubit of the graph with the control being the first qubit of the
ancilla. The rotation itself is described by the operator −σz (a Pauli matrix). This controlled
rotation applied on the state (24) performs the transformation |A〉 → |A〉, while the state |Bij 〉
remains unchanged.

We see that at this stage the two desired components α|A〉 and
∑

γij |Bij 〉 of the graph
state (9) are generated, but they are entangled with the first ancilla qubit. The second stage
of the preparation procedure is designed so that the ancilla is disentangled from the graph,
while the graph is left in the state (9). To disentangle the first ancilla qubit from the rest of the
system we will use the other two ancilla qubits. In order to perform this disentanglement we
have to find a network that will discriminate between two graph states |A〉 and

∑
γij |Bij 〉

Let us analyse in more detail the state
∑

γij |Bij 〉. In this state two or four neighbouring
qubits are in different states. This is in contrast to the state |A〉, in which all qubits are in the
same state. The discrimination of the two states can be performed by applying the cNOT gate
acting always on two neighbouring qubits. If the target is in the state |0〉 then after the action
of the cNOT gate the two qubits that are involved in the action of the gate are in the same state.
On the other hand, if it is |1〉, the two qubits differ. From here it follows that we can use the
target qubit as a control for another gate, which changes its targets if and only if the two graph
qubits differ.

Let us utilize for this purpose the gate A which will act on the last two ancillas (see
figure 2). We apply the cNOT gate on two qubits from N graph qubits and then we apply the
A-gate controlled by the target of the cNOT , acting on the last two ancillas. After that, we
again apply the cNOT gate on the same two qubits as before: this operation will bring all qubits
into the original state (since cNOT2 = I ), and the only effect of this particular procedure is a
rotation of the state of the last two ancillas. This rotation will take place only in the case when
the two ‘tested’ qubits were in different states.

Then we repeat the same procedure for each pair of the first N neighbouring qubits of the
graph. After this, the A gate acted either two or four times on ancilla qubits that are entangled
with the state

∑
γij |Bij 〉 of the graph. On the other hand, those ancillas that are entangled

with the state |A〉 are not changed.
The reason for using the A-gate, the ‘square root’ of the operation (19), now becomes

clear: the A2 gate is acting once or twice and the state |0〉 |0〉 of the last two ancillas is changed
either to −|0〉 |1〉 or to |1〉 |1〉. On the other hand, in the case when all target qubits are equal,
A will not act at all and the resulting state of the last two ancillas will be unchanged, thus
|0〉 |0〉. If the cNOT gate between the last (control) and the first (target) ancilla qubit is applied,
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initial final

11

0

0
0

0
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2 ≈N gates≈N gates

R

A A-1

Figure 3. A schematic description of the entire logic network for the preparation of the entangled
graph in the state (9). First we use the part with the rotation R(α), then we correct a sign with the
help of a controlled σz rotation. Finally, we disentangle the ancilla qubits with the help of the A

and A−1 rotations. The desired state is prepared with the help of (of the order of magnitude) N2

elementary gates.

then the first ancilla will be changed to the state |0〉 and it becomes disentangled from the rest
of the system. Now all the work is almost done, the only thing we have to do is to disentangle
the two remaining ancilla qubits. For this we will simply run the procedure for all neighbouring
pairs of qubits as described above, but with the gate A−1 instead of the gate A. This will
change the state of the last two ancilla qubits back to the original state |0〉 |0〉 and will finally
disentangle the ancilla from the system. That means that the desired state |�〉 of the N graph
qubits is disentangled from the ancilla and the entangled graph is prepared in the state (9).

Finally, let us summarize the preparation procedure for the entangled graph given by the
state (9). As shown in figure 3, first we apply the rotations R on all pairs of qubits of the graph,
i.e.

G1 = (cσz)N+1,N

∏
i �=j

(Ti,j,N+1R(αij )N+1,i,j ) (26)

where the subscripts for each operation define the position of qubits, where operation takes its
action. Angles of rotations αij are defined by equation (23), and cσz stands for the controlled
sigma gate applied on the first ancilla as a control and one of the graph qubits as a target.
At this stage we will use roughly N2 bipartite gates. The second stage of the preparation
corresponds to disentangling the first ancilla qubit from the graph qubits

G2 = cNOTN+3,N+1

N∏
i,i+1

(cNOT i,i+1Ai+1,N+2,N+3cNOT i,i+1). (27)

The last stage of the preparation process is responsible for disentanglement of the last two
ancilla qubits from the graph qubits, i.e.

G3 =
N∏

i,i+1

(cNOT i,i+1A
−1

i+1,N+2,N+3cNOT i,i+1). (28)

In the last two equations the indices i +1 for the gates are taken implicitly as modulo N. Finally
we can represent the action of the whole logic network as

|�〉F |1〉N+1|0〉N+2|0〉N+3 = G3.G2.G1.|�〉I |1〉N+1|0〉N+2|0〉N+3 (29)

where |�〉F is the desired state (9) of the entangled graph with weighted edges.
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6. Conclusion

In this paper, we have introduced a concept of entangled graphs with weighted edges. Using
simple examples we have shown that sharing of bipartite entanglement is a complicated
phenomenon and that the Coffman–Kundu–Wootters inequalities [9] are only a necessary
condition for the existence of states with given entanglement properties.

We have proved that a whole class of entangled graphs, where the concurrence between
an arbitrary pair of qubits (vertices) is weaker than a certain value, can be realized by a
state of N qubits. Moreover, we have proposed a logic network for preparation of the states
corresponding to this entangled graphs. The network is composed of a number of elementary
quantum gates that grows quadratically with the number of vertices (qubits) in the graph.
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Appendix A. Concurrence in entangled graphs

In what follows we will evaluate the concurrence between an arbitrary pair of qubits of a
system in the state (9), i.e.

|�〉 = α(|00...00〉 + |11...11〉) +
∑
{i,j}

γij (|11〉ij |00...00〉ij + |00〉ij |11...11〉ij ) (A.1)

where real positive amplitudes α and γij satisfy the normalization condition

2α2 + 2
∑
{i,j}

γ 2
ij = 1. (A.2)

The sum in equations (A.1) and (A.2) is taken through all pairs i �= j where i, j ∈ N̂ , so
{i, j} = {j, i} and thus γij = 0 for i < j . The special form of the state (A.1) leads to a rather
compact density matrix for an arbitrary two-qubit operator that is obtained by tracing over the
rest of the graph qubits:

ρij =




A 0 0 F

0 B E 0
0 E B 0
F 0 0 A


 (A.3)

where we have used the notation

A = γ 2
ij + α2 +

∑
{k,l}

γ 2
kl B =

∑
k

(
γ 2

kj + γ 2
ki

)
E = 2

∑
k

γkiγjk F = 2αγij .

(A.4)

All sums in equations (A.4) are running through free parameter(s) k (and l), whereas i and j

denote a specific pair of qubits in the graph. In addition, the condition i �= k �= l �= j has to
be fulfilled.

The convenient form of the matrix (A.3) allows us to calculate square roots of the
eigenvalues of the matrix R given by equation (2):

λ1 = A + F λ2 = A − F λ3 = B + E λ4 = B − E. (A.5)
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Because the coefficients A,B,E, F are positive, the only candidates for the largest eigenvalue
are λ1 and λ3. Let us further define

γmax = max
i,j

(γij ). (A.6)

Using the condition

α � 2γmax

√
N − 2 (A.7)

we find λ1 � λ3 and the general expression for the concurrence associated with the edges of
the entangled graph prepared in the state (A.1) reads

Cij = max


2


2αγij −

∑
{k,i}

γ 2
ki −

∑
{k,j}

γ 2
kj


 , 0


 . (A.8)

Appendix B. Proof of Theorem 1: iterative procedure

In order to prove theorem 1 we first label the set of concurrences that determine a given
entangled graph by Cij . We will use a bold C in order to distinguish these concurrences from
any intermediate concurrences, obtained by searching for the state of the entangled graph.

We will start the iteration procedure with an initial state of the entangled graph given by
equation (9). The amplitudes γij are specified by the relation

γ
(0)
ij ≡ λ√

2 + N(N − 1)λ2
(B.1)

that is, the initial state is completely permutationally symmetric. The parameter λ is defined
as

λ =
√

4(N − 2)2 + 2N(N − 1) − 2(N − 2))

N(N − 1)
. (B.2)

The corresponding bi-partite concurrences can be evaluated straightforwardly and they read:

C
(0)
ij = Cmax = 2

(
α(0)γ

(0)
ij − 2(N − 2)

(
γ

(0)
ij

)2) =
√

6N2 − 18N + 16 − 2N + 4

N(N − 1)
. (B.3)

We recall that the parameters α(0) and γ
(0)
ij are mutually related via the normalization condition

(12), therefore α is always implicitly defined by γij . It is also clear that for the state under
consideration the condition (14) is fulfilled as well.

Before we describe the iteration procedure itself we introduce the following notation: we
enumerate all pairs of qubits in the entangled graph. All pairs of qubits (i.e. the edges of the
graph) are listed in the set of pairs just once. At each iteration step one parameter γkl for a
selected pair of indices {k, l} is changed, whereas all other gammas will stay unchanged. Let
us now suppose that the nth step of the iteration is done and both conditions (15) and (14) are
still fulfilled. Moreover α(n), γ

(n)
ij are positive. Hence we find

C
(n)
ij � Cij (B.4)

α(n) � 2
√

N − 2γ (n)
max (B.5)

0 < α(n) � 1 0 � γ
(n)
ij < 1 (B.6)
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for all pairs of indices i, j . The parameter γ (n)
max is defined in the same way as in equation (A.6),

i.e.

γ (n)
max = max

i,j

(
γ

(n)
ij

)
. (B.7)

In the next iteration step we take a pair of qubits (i.e. the edge) that follows after the pair
which was selected in the previous iteration step n. Let us denote this pair with indices {i, j}.
Then, in the (n+ 1)th iteration step, we will change the parameters of the state in the following
way:

γ
(n+1)
ij = U(n) − V (n)

2
(B.8)

α(n+1) = U(n) + V (n)

2
(B.9)

where
U(n) = [(

α(n) + γ
(n)
ij

)2
+ 1

2

(
Cij − C

(n)
ij

)]1/2
(B.10)

V (n) = [(
α(n) − γ

(n)
ij

)2 − 1
2

(
Cij − C

(n)
ij

)]1/2
. (B.11)

All other gammas remain unchanged at this iteration step. Following the conditions (B.4) and
(B.5) this iteration step is well defined. Now we will discuss several important properties of
the iteration process:

(1) α(n+1) and γ
(n+1)
ij are solutions of the equation

α(n+1)γ
(n+1)
ij = α(n)γ

(n)
ij + 1

4

(
Cij − C

(n)
ij

)
(B.12)

and thus according to equation (13)

C
(n+1)
ij = max


2


2α(n+1)γ

(n+1)
ij −

∑
{k,i}

(
γ

(n+1)
ki

)2 −
∑
{k,j}

(
γ

(n+1)
kj

)2


 , 0




= max
{
Cij , 0

} = Cij . (B.13)

(2) α(n+1) and γ
(n+1)
ij fulfil the normalization condition (12).

(3) γ
(n+1)
ij and α(n+1) are positive and satisfy the relations

0 � γ
(n+1)
ij < γ

(n)
ij (B.14)

α(n) < α(n+1) � 1. (B.15)

(4) From equations (B.14) and (B.15) it follows that

α(n+1) > α(n) � 2
√

N − 2γ (n)
max � 2

√
N − 2γ (n+1)

max . (B.16)

Therefore the condition (B.5) is valid also for the (n + 1)th iteration step.
(5) Let us now show how particular concurrences will change in this single iteration step. For

k, l �= i, j we find

C
(n+1)
kl = 2


2α(n+1)γ

(n+1)
kl −

∑
{k,m}

(
γ

(n+1)
km

)2
−
∑
{l,m}

(
γ

(n+1)
lm

)2




= 2


2α(n+1)γ

(n)
kl −

∑
{k,m}

(
γ

(n)
km

)2
−
∑
{l,m}

(
γ

(n)
lm

)2
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> 2


2α(n)γ

(n)
kl −

∑
{k,m}

(
γ

(n)
km

)2
−
∑
{l,m}

(
γ

(n)
lm

)2




= C
(n)
kl (B.17)

and for k = i

C
(n+1)
il = 2


2α(n+1)γ

(n+1)
il −

∑
{i,m}

(
γ

(n+1)
im

)2
−
∑
{l,m}

(
γ

(n+1)
lm

)2




= 2


2α(n+1)γ

(n)
il −

∑
{i,m}

(
γ

(n+1)
im

)2
−
∑
{l,m}

(
γ

(n)
lm

)2




> 2


2α(n)γ

(n)
kl −

∑
{i,m}

(
γ

(n)
im

)2
−
∑
{l,m}

(
γ

(n)
lm

)2




= C
(n)
il . (B.18)

The same is valid also for k = j .

Thus we have shown that after this iteration step the concurrence for fixed i, j (i.e. for
the given edge) will be C

(n+1)
ij = Cij , and all other concurrences of the entangled graph will

become larger. Thus, the condition for all i, jC
(n+1)
ij � Cij will be fulfilled. Therefore, the

state defined by equation (9) with the parameters γ
(n+1)
ij can be used for the next (n + 2)th

iteration step.
Therefore, the whole iteration is well defined and we will obtain an infinite sequence

of parameters {α(n)}∞n=0 and
{
γ

(n)
ij

}∞
n=0 for each pair of indices i, j (i.e. for each edge of the

entangled graph). All sequences are monotonous and are bounded, and therefore they have
proper limits. Let us denote these limits as α and γij

α = lim
n→∞ α(n) ⇒ α ∈ (0, 1〉 (B.19)

γij = lim
n→∞ γ

(n)
ij ⇒ γij ∈ 〈0, 1). (A.29)

Now we will choose and fix one pair of indices i, j and we will show that

lim
n→∞ C

(n)
ij = Cij . (B.21)

First we define a sequence {k(n)}∞n=0 in a following way: k(1) = p, where p is a rank of {i, j}
in the order of pairs of indices, and k(n) = p + nN(N−1)

2 . Then

C
(k(n))
ij = Cij . (B.22)

The equation (B.21) is equivalent to the definition

(∀ ε ∈ R, ε > 0)(∃n0 ∈ N)(∀ n ∈ N, n > n0)
(∣∣C(n)

ij − Cij

∣∣ < ε
)
. (B.23)

Let us choose and fix the small parameter ε. Our task is to find n0, that will have the property
(B.23). Because all sequences {α(n)}∞n=0 and

{
γ

(n)
kl

}∞
n=0 have a proper limit, they are Cauchy

sequences and therefore

(∀ τ ∈ R, τ > 0)(∃m0 ∈ N)(∀ n,m ∈ N, n,m > m0) (∀ {k, l})
(|α(n) − α(m)| < τ

|γ (n)
kl − γ

(m)
kl | < τ

)
(B.24)
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where

τ = ε

4N(N − 1)
. (B.25)

For this τ there exists such an m0 that the property (B.24) is fulfilled and we can define n0 as

n0 ≡ k(m0) > m0. (B.26)

Further we will calculate the difference
∣∣C(n+1)

ij − C
(n)
ij

∣∣ for n + 1 > n0 and n + 1 /∈
{k(n)}∞n=0. The last condition means that the (n + 1)th iteration step did not change γ

(n)
ij . From

equations (B.17) and (B.18), we obtain two options for the difference under consideration
either ∣∣C(n+1)

ij − C
(n)
ij

∣∣ = 4|α(n+1) − α(n)|∣∣γ (n)
ij

∣∣ < 4τ < 8τ (B.27)

or∣∣C(n+1)
ij − C

(n)
ij

∣∣ = ∣∣4(α(n+1) − α(n))γ
(n)
ij − 2

(
γ

(n+1)
il

)2
+ 2
(
γ

(n)
il

)2∣∣
< 4|α(n+1) − α(n)|∣∣γ (n)

ij

∣∣ + 2
∣∣γ (n+1)

il − γ
(n)
il

∣∣∣∣γ (n+1)
il + γ

(n)
il

∣∣
< 8τ

where γ
(n)
il is the parameter, which was changed in the (n + 1)th iteration step.

Finally, we can say for n > n0, if n ∈ {k(n)}∞n=0, then
∣∣C(n)

ij − Cij

∣∣ = 0. In the opposite
case there exists such u ∈ N0 that

n ∈ 〈k(m0 + u), k(m0 + u + 1)〉. (B.28)

Thus

∣∣C(n)
ij − Cij

∣∣ =

∣∣∣∣∣∣∣
(
C

(n)
ij − C

(n−1)
ij

)
+
(
C

(n−1)
ij − C

(n−2)
ij

)
+ · · · +

(
C

(k(m0+u))
ij − Cij

)
︸ ︷︷ ︸

=0

∣∣∣∣∣∣∣
<

8N(N − 1)τ

2
= ε.

But then it must stand

Cij = lim
n→∞ C

(n)
ij = lim

n→∞ 2


2α(n)γ

(n)
ij −

∑
{k,i}

(
γ

(n)
ki

)2 −
∑
{k,j}

(
γ

(n)
kj

)2




= 2


2αγij −

∑
{k,i}

γ 2
ki −

∑
{k,j}

γ 2
kj


.

All other conditions remain fulfilled in the limit form as well. Because this property is valid
for all pairs of indices, we have found the parameters γij that define the state (9) which
corresponds to a given entangled graph.
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